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Abstract—Relational databases lack behind when handling 

array data and thus array databases were created to fill this gap. 

Array databases provide optimized storage, retrieval, and 

processing of multidimensional discrete data (MDD), also known 

as array data. Just like relational array databases, data processing 

in array databases is handled declaratively through an array 

query language that offers enough expressible power to define a 

myriad of operations. However, despite the advancements in array 

database technology, there is still a gap in describing machine 

learning (ML) algorithms and in particular neural networks 

which, in recent years, have been adopted for predicting 

phenomena in science and engineering. 

In this contribution, we outline an implementation roadmap 

for defining neural networks in an array database. We first 

identify the necessary linear algebra operators present in a feed-

forward neural network and use them to define the training and 

prediction operations of that network. We also define other 

operators that, though they are not part of linear algebra, are 

essential for a complete machine-learning implementation. 

Keywords—array databases, machine learning, linear algebra, 

array query language, datacubes 

I. INTRODUCTION 

Machine Learning (ML) is increasingly being utilized in 
many different applications in both industry and research. ML 
estimates results by training predictive models using datasets 
that can be several orders of magnitude larger than the main 
memory. Historically, these datasets tend to either sit in the file 
system or in a database for later retrieval by a third-party ML 
software for modelling and training. In this regard, databases are 
mostly used as mere data repositories. This approach overlooks 
key beneficial features for ML model processing that are 
provided by database systems, such as the declarative and 
expressive power of a query language; and the powerful data 
retrieval technologies that have been perfectioned over the years 
since their inception in the 1960s. 

A considerable number of datasets that are currently used for 
ML are composed of multidimensional discrete data (MDD), 
also known as array data or datacubes [1][2]. These datacubes, 
which are often considered the “bread and butter” of scientific 
computing [3][4], frequently represent spatio-temporal sensors, 
images, simulations, and statistical data generated by a plethora 
of applications in science, engineering, and beyond. Examples 

of datacubes comprise 2-D satellite imagery, 3-D x/y/t image 
time series, x/y/z geophysical voxel data, and 4-D x/y/z/t climate 
data from the geoscience field; microarray, confocal 
microscopy, and human brain data from life sciences [5]. The 
amount of data produced and can reside in an Array Database is 
huge, in the order of Petabytes (PB), with Terabytes of new data 
being produced daily. This phenomenon can be seen in the 
growth of NASA’s Earth Observing System Data and 
Information System (EOSDIS) data archive from 15 Petabytes 
(PB) of data in 2015 to more than 59 PB in 2022, with annual 
data ingestion rates only expected to increase by an order of 
magnitude by the end of 2021 [6]. 

Relational databases generally do not perform when 
handling array data, to fill the gap array databases were created 
[7]. Array Databases close a gap in the database world by 
providing modelling, storage, and processing support on 
datacubes. Currently, most ML applications do not use Array 
Databases, which results in these applications not using the 
latter's full array processing capabilities during model training 
and prediction. Among the benefits of using array databases for 
ML processing we have: 

• Avoid massive data copying to external systems. 

• Array database inherent efficient and scalable array data 
processing techniques. 

• Standardized declarative query language for trimming 
and slicing multidimensional arrays. 

Currently, most ML applications do not use Array 
Databases. At its heart, ML algorithms are composed of linear 
algebra. By defining the linear algebra operators in an array 
database query language, users can leverage the inherent data 
processing features of the array database with the inference 
capabilities of machine learning algorithms. 

In this contribution, we propose an implementation roadmap 
of the necessary extensions that will be needed to define a neural 
network in the array database rasdaman [7]. Neural networks 
and especially deep neural networks are one of the most, if not 
the most, used ML algorithm for modelling non-linear decision 
boundaries. Its flexibility has made it ideal for many applications 
in science and engineering which also crossroads with array 
databases, e.g., Visual Query Answering for Remote Sensor 
Data (RSVQA) [8] and High Latitude Dust Detection [9]. To 
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build insight into the reader, we first define a feed-forward 
neural network in mathematical terms while highlighting the 
linear algebra components. This paper is organized as follows: 
Section II. presents the related work that has been done towards 
implementing ML in array databases. Section III describes the 
rasdaman array query language. Section IV presents the 
mathematical definition of a feed-forward neural network. 
Section V describes the necessary language extensions to the 
array query that implement a feed-forward neural network. 
Finally, sections VI and VII present the conclusions and future 
work respectively. 

II. RELATED WORK 

There have already been some attempts towards integrating 
ML algorithms in array databases by incorporating user data 
types (UDT) and user-defined functions (UDF). Systems like 
MADlib [10] and Bismark [11] define a new UDT called vector 
that stores matrix rows and columns. Fig. 1 illustrates the vector 
UDT for matrices A and B. Once the UDT is defined, a 
dotproduct(v1, v2) UDF is defined which calculates the dot 
product of two matrices using the vector UDTs v1 and v2. Fig. 
2 defines the query that will output the dot product of two tables. 

 

Fig. 1. Matrix storage in tables using vector representation 

SELECT A.i, B.j, dotproduct(A.row * B.col) 

FROM A, B 

WHERE A.j = B.i 

GROUP BY A.i = B.j; 

Fig. 2. Query calling the dotproduct user defined function 

Other systems enable users to employ their preferred ML 
framework, in this case Python, to construct a model with all 
pre-processing steps and library dependencies. In this system, 
users are also able to query an inferred value from that model. 
The model and the query undergo static analysis to produce an 
intermediate representation (IR) that later results in an optimized 
query plan that is finally translated into an optimized SQL using 
a runtime code generator that finally runs into a runtime engine 
like ONNX. Its syntax is a melange of python with SQL query 
syntax. The RAVEN system [12] employs this type of approach. 

In the case of full-stack array databases, rasdaman permits 
encapsulation of all linear algebra and ML-specific code into a 
portable and callable UDF that can be executed as part of an 
array query. This provides a way to extend the array database 
functionality to support ML but can also decrease the efficiency 
of ML algorithms because different database optimization 
strategies cannot always be applied. From the users’ perspective, 
they only need to define the appropriate parameters and the 
database will output a result; this is a convenient and relatively 
easy implementation approach for ML. However, other than the 
ease of implementation and avoidance of data copying, there is 
no actual use of the underlying array database optimization 

techniques. In this contribution, we argue that the utilization of 
these techniques should not be overlooked because they can 
constitute a breakthrough in array data processing. The next 
section presents rasdaman’s array query language and highlights 
its key language structures that can support ML algorithm 
definitions. 

III. ARRAY QUERY LANGUAGE 

In this section, we describe how rasdaman’s array query 
language rasql, provides the necessary expressive power to 
describe arrays of arbitrary size and dimension. In 2019, the 
rasql query language has been adopted into ISO SQL – modulo 
syntax adaptations – into ISO SQL [13]. 

A. rasdaman query language 

rasdaman’s array query language [14], rasql, provides 
retrieval, filtering, and processing of MDD operators. The 
expressive power of rasql allows to state operations up to the 
complexity of the Discrete Fourier Transformation. Its 
cornerstone are two operators: the array constructor MARRAY 
and the array condenser MDCONDENSE. 

The MARRAY constructor takes an n-D array extent and an 
expression and builds an array whose cells are filled by 
evaluating the expression for each array position. For example, 
Fig. 3 creates a 100x100 matrix filled with the pairwise 
difference of cells taken from existing arrays a and b. This can 
also be abbreviated as a-b. 

MARRAY p in [ 0:99, 0:99] 

VALUES a[p]-b[p] 

Fig. 3. MARRAY pairwise difference example 

Any general index computation is possible, though, such as 
determining changes in an x/y/t time-series tx. Fig. 4 exemplifies 
how this can be defined. 

MARRAY   x in [ 0:99 ], 

                  y in [ 0:99 ], 

                  t in [ 0:99 ] 

VALUES   ts[x,y,t] - ts[x,y,t-1] 

Fig. 4. MARRAY example to determine changes in x/y/t 

The condenser MDCONDENSE is somewhat dual in that it 
iterates over some array area and aggregates based on some 
aggregation function which is one of the usual suspects count, 
sum, avg, min, max, some, and all. Fig. 5 shows an expression 
which determines the maximum value of a MDD array. 

Fig. 5. MDCONDENSE maximum value example 

Again, there is a shorthand for this simple case, written as 
mdmax(a). And as before, general expressions and addressing 

MDCONDENSE max 

OVER                 p in sdom(a)  

USING               a[p] 



schemes are possible. Altogether, a typical array SQL query 
looks like below. Fig. 6 contains an attribute data constituting an 
array with many satellite image spectral bands, including red 
and nir. From this, the difference of two bands is computed for 
every tuple, restricted to the x/y/t coordinates indicated in 
brackets. The result gets encoded in NetCDF, so the query 
response overall is a (possibly empty) set of NetCDF files. 

SELECT encode( ls.data.red - ls.data.nir) 

                             [ x0:x1, y0:y1, t0:t1 ], 

                             "application/netcdf" ) 

FROM LandsatImageTimeseries as ls 

Fig. 6. Array with many satellite image spectral bands example  

This language allows expressing operations on vectors, 
matrices, and tensors up to the complexity of the Discrete 
Fourier Transform. What cannot be expressed are algorithms 
that are inherently iterative, such as matrix inversion. Adding 
iterative power to the language, ultimately enabling complete 
Linear Algebra, while retaining termination guarantees is an 
area of active research. 

IV. MATHEMATICAL DEFINITION OF A FEED-FORWARD NEURAL 

NETWORK 

To build intuition into the necessary linear algebra operators 
that are needed for defining a neural network, the following 
section covers the mathematical definition of a simplified feed-
forward neural network. We proceed to describe its inputs and 
outputs along with the necessary linear algebra operations 
needed to implement a neural network. 

Neural networks are robust and widely used ML algorithms 
used for both regression and classification problems. Although 
firstly conceived to build machines that mimic the human brain, 
it has been widely adopted in many everyday applications like 
image recognition, sales forecasting, and text classification. 

In its essence, a neural network is a group of connected 
neurons ordered in layers. Fig. 7 depicts an example of a neural 
network that consists of 4 layers. Layer 1 (input layer) contains 
the features of the training sample {x1, x2, x3} . Layer 2 and 
Layer 3 are hidden layers that contain the activation nodes; each 

activation unit 𝒊 in layer 𝒋 can be identified as aj
i. Finally, Layer 

4 is the output layer, or the result of the hypothesis where 

hθ(x) = [a1
(4)

a2
(4)

a3
(4)] and K = 3, where K is the number 

of labels. Any output layer with K > 2 is considered a multi-

class classification neural network. The bias units xo, a0
(2)

, and 

a0
(3)

; shift the activation function by adding a constant, usually 

1, to the input. It is analogous to the role of a constant in a linear 
function. 

 

Fig. 7. Feed-forward neural network 

For each layer j  there exists a weight matrix θ(j)  that 
contains the weight mapping from layer j to layer j + 1. Figure 

below shows the weight matrix for the first layer 𝜃(1). Equation 

(1) shows the weight matrix for the first layer θ(1) . As a 

convention in this paper, let θxy
(j)

 represent the weight from unit 

y in a preceding layer 𝑗 to unit x in subsequent layer. 

 𝜃(1) = [

𝑎10
(1)

𝑎11
(1)

𝑎12
(1)

𝑎13
(1)

𝑎20
(1)

𝑎21
(1)

𝑎22
(1)

𝑎23
(1)

𝑎30
(1)

𝑎31
(1)

𝑎32
(1)

𝑎33
(1)

] () 

To calculate the resulting hypothesis, we must perform a 
forward propagation to compute the unit’s activation. Equation 
(2) defines the activation unit’s computation for any layer j for 
the 4-layer neural network. Where g represents the activation 
function, which in this example is sigmoid. 

 

𝑎1
(𝑗+1)

= 𝑔(𝜃10
(𝑗)

𝑎0
(𝑗)

+ 𝜃11
(𝑗)

𝑎1
(𝑗)

+ 𝜃12
(𝑗)

𝑎2
(𝑗)

+ 𝜃13
(𝑗)

𝑎3
(𝑗)

)

𝑎2
(𝑗+1)

= 𝑔(𝜃20
(𝑗)

𝑎0
(𝑗)

+ 𝜃21
(𝑗)

𝑎1
(𝑗)

+ 𝜃22
(𝑗)

𝑎2
(𝑗)

+ 𝜃23
(𝑗)

𝑎3
(𝑗)

)

𝑎3
(𝑗+1)

= 𝑔(𝜃30
(𝑗)

𝑎0
(𝑗)

+ 𝜃31
(𝑗)

𝑎1
(𝑗)

+ 𝜃32
(𝑗)

𝑎2
(𝑗)

+ 𝜃33
(𝑗)

𝑎3
(𝑗)

)

 () 

Finally, equation (3) expresses the hypothesis function ℎ𝜃. 
Here 𝑗 denotes the last hidden layer of the neural network. 

 ℎ𝜃(𝑥) = [

𝑔(𝜃10
(𝑗)

𝑎0
(𝑗)

+ 𝜃11
(𝑗)

𝑎1
(𝑗)

+ 𝜃12
(𝑗)

𝑎2
(𝑗)

+ 𝜃13
(𝑗)

𝑎3
(𝑗)

)

𝑔(𝜃20
(𝑗)

𝑎0
(𝑗)

+ 𝜃21
(𝑗)

𝑎1
(𝑗)

+ 𝜃22
(𝑗)

𝑎2
(𝑗)

+ 𝜃23
(𝑗)

𝑎3
(𝑗)

)

𝑔(𝜃30
(𝑗)

𝑎0
(𝑗)

+ 𝜃31
(𝑗)

𝑎1
(𝑗)

+ 𝜃32
(𝑗)

𝑎2
(𝑗)

+ 𝜃33
(𝑗)

𝑎3
(𝑗)

)

] () 

The cost function 𝐽(𝜃)for feed-forward neural networks is 

depicted in Equation (4). Where 𝑦𝑘
(𝑖)

 and (ℎ𝜃(𝑥(𝑖)))𝑘  are, 

respectively, the 𝑘𝑡ℎ elements of the expected output and the 

hypothesis output for input example 𝑥(𝑖). 

 𝐽(𝜃) =
−1

𝑚
∑ ∑ 𝑦𝑘

(𝑖)
log(ℎ𝜃(𝑥(𝑖)))𝑘 + (1 −𝐾

𝑘=1
𝑚
𝑖=1

                                           𝑦𝑘
(𝑖)

) log(1 − log(ℎ𝜃(𝑥(𝑖)))𝑘)          (4) 

Once the cost is calculated, the next step is to calculate the 
gradient descent, for that it is necessary to use the cost function, 
its partial derivative, and execute the backpropagation 
algorithm. This algorithm computes the error for each input 



sample, using the cost function, and subsequently calculates the 
partial derivative by backpropagating the errors from the output 
layer to the input layer. To exemplify this process, we will use a 
4-layer neural network example from before and use its 
vectorized implementation for simplification.  

For each training sample (𝒙, 𝒚), we compute the activations 
of the units with forward propagation. Equations (5) – (10) 
define the sequence of operations in forward propagation. 

𝑎(1) = 𝑥  () 

𝑧(2) = 𝜃(1)𝑎(1)  () 

a(2) = g(z(2)) (add a0
(2)

)  () 

z(3) = θ(2)a(2)  () 

a(3) = g(z(3)) (add a0
(3)

)  () 

z(4) = θ(3)a(3)a(4) = hθ(x) =  g(z(4)) () 

Once the resulting hypothesis is calculated, the 
backpropagation algorithm is used to compute each unit’s error 
in the training example. Equations (11) – (13) depicts the 
sequence of operations for backward propagation. The errors for 

layer l are denoted as 𝜹(𝒍). In this approach, the errors for the 
output layer are calculated first. Subsequently we continue with 
layer l by backpropagating the errors in layer 𝑙 + 1. 

δ(4) = hθ(x) − y = a(4) − y  () 

δ(3) = (θ(3))Tδ(4).∗ g′(z(3))  () 

𝛿(2) = (𝜃(2))𝑇𝛿(3).∗ 𝑔′(𝑧(2))      () 

When training the neural network, the errors computed for 
each training example are used to calculate the overall partial 
derivatives for the entire training set.  Fig. 6 shows the 
implementation of the backpropagation algorithm. 

Algorithm 1 Backpropagation Algorithm 

1: training_set = [(x1, y1), (x2, y2), …, (xm, ym)] 

2: delta[l] = 0 (for all i, j, l) 

3: for i = 1; i < m; do 

4:   a[1] = x[1] 

5:   for l = 2; l <= L; l++ do 

6:     forward_propagation(a[l]) 

7:   end for 

8:   error(L) = a[L] – y[i] 

9:   for j = 1; L – j >= 2; j++ do 

10:     compute_errors(error(L-j)) 

12:   end for 

13:   for l = 1; h >= ; h++ do 

14:     delta[l] = delta[l] + error(l+1) *. transpose(a[l]) 

15:   end for 

16: end for 

17: partial_derivatives = delta[l] / m 

Fig. 8. Backpropagation algorithm 

The convention for assigning values is the “=”. Line 1 
assigns a 1-dimensional array of key pairs to variable 
training_set; xn contains the training example and yn the ground 
truth. In Line 2 the accumulated errors delta[l] for layer l, row i, 
and column j are initialized to zero.  Lines 3-16 execute the 
forward propagation, error computation, and error accumulation 
for each training example. Finally, in line 17 the 
partial_derivatives variable stores the partial derivatives using 
the accumulated errors. 

In summary, the backpropagation algorithm can be 
constructed by utilizing the following linear algebra operators: 

• Vector/Matrix - Scalar operations: +, -, * , / 

• Vector/Matrix unary operations: transpose 

• Vector/Matrix binary operations: +, -, *, / 

• Vector/Matrix element-wise operations: .* 

• Vector/Matrix aggregate operations: sum 

In addition, although not part of linear algebra, iteration 
constructs are also necessary for calculating the forward and 
back propagation of each training sample. 

V. ARRAY QUERY LANGUAGE EXTENSIONS 

This section comprehends the definition of two queries that 
constitute the training and prediction routines of a neural 
network. It is worth mentioning that it is not worth investing 
time and effort developing new implementations of linear 
algebra operators such as tensor transpose or tensor 
multiplication. There are already efficient open-source 
implementations of these operators that can be used ad-hoc to 
perform these operations inside an array database, such as BLAS 
[15], LAPACK [16], or architecture specific libraries such as 
Intel MKL [17]. 

In this section, we focus on a fully connected feed forward 
neural network. We define two queries that constitute the 
training and prediction routines of a neural network. For each 
routine, we define the queries inputs and expected outputs. 

A. Training Query 

This query has the objective of calculating the weights and 
biases that best fit the training examples to the ground truth. 
Inputs are the following: 

• Training Data (X): MDD array containing the training 
examples. NOTE: For simplicity we consider only 
rasdaman’s atomic types, like the ones in C. 



• Ground Truth (Y): MDD array containing the labels or 
ground truth. Same as with the training data we consider 
only rasdaman’s atomic types. 

• Initial Weights (initial_weights): MDD array containing 
the user defined initial weights. If none is provided, then 
a MDD with all values equal to zero will be assumed. 

• Initial Biases (initial_biases): MDD array containing the 
user defined initial biases. If none is provided, then a 
MDD with all values equal to zero will be assumed. 

• Learning Rate (alpha): Scalar value which determines 
the steps which are taken in the minimization of the cost 
function. 

• Number of Training Examples (m): Scalar value that 
determines the number of training examples in the input 
training data X this number can be determined 
automatically by rasdaman or provided by the user. 

• Activation Function (default: sigmoid): It is the function 
that determines the activation value of each neuron. It 
can be expressed by the user either in mathematical form 
or using UDFs. 

• Activation Function Derivative (default: 
sigmoidDerivative): The function is used in the back 
propagation step to update the errors MDD. Same as with 
activation function it can be expressed by the user either 
in mathematical form or using UDFs. 

The outputs can either be temporary maintained in main 
memory or ingested into a collection in rasdaman. They are the 
following: 

• Learned Weights (learned_weights): MDD array 
containing the trained weights. 

• Learned Biases (learned_biases): MDD array containing 
the trained weights. 

We commence on line 1 be defining a MARRAY construct 
as an iterator, the outer loop MARRAY i IN [0:10] AS iters 
represents the epochs which are user specified and represent 
how many times the neural network will adjust the weights and 
biases for all the layers in the network. Lines 2-36 encapsulate 
the forward and backpropagation routines defined in section IV. 
From lines 3-23, we are inside the the MARRAY iterator and 
start performing the forward pass of the neural network, for that 
line 3 defines another MARRAY construct MARRAY j IN [0:10] 
AS layers that represents each of the layers of the neural 
network; These are defined by the user. Next, on lines 3-23 a 
second MARRAY iterator construct is defined which 
encapsulates a case clause which performs four operations: 1) 
Update of the weights MDD, 2) Update of the bias MDD, 3) 
Update of the activations MDD, and 4) Provide control for when 
to calculate the errors. Lines 5-9 define the operations necessary 
in the weights case; the algorithm starts with the first step of the 
iteration, i.e,. i = 0, in line 7 where an already defined 
initial_weights MDD loads the user-specified weights on a 
training weights MDD called iters.weights. Next, the the biases 
case in line 12, the initial_biases are loaded into a training biases 
MDD iters.biases. Furthermore, in the activations case in line 

18, the initial values of the training activations MDD 
iters.activations will be  the user defined input values X, which 
is a MDD, or MDD expression (subsetting, slicing, etc), 
containing the training examples. Finally, the errors case in line 
22 assures that no error during updating is done to the training 
errors. MDD iters.errors in the forward propagation step. This 
is reserved exclusively to the backpropagation step. 

In the following steps of the iteration, i.e,. i > 0, the case 
clause will calculate the forward pass of the neural network 
updating the weights, biases, and activations MDDs i.e,.  
iters.weights, iters.biases, and iters.activations using the defined 
linear algebra operators #* (tensor multiplication), and +, - for 
element-wise addition and subtraction respectively. For the 
weights and biases case, we reference a iters.errors MDD in line 
8 which contain the backpropagated errors from the 
backpropagation step. Additionally, two scalars alpha and m are 
introduced. The first scalar alpha is user defined and refers to 
the learning rate. The second scalar m can either be a value 
defined by the user or calculated internally and refers to the 
number of training examples. In the activations case, in line 20, 
an activation function must be defined. In this opportunity, we 
continue with the sigmoid() function following the feed-forward 
neural network example from section IV; the activation function 
can be replace with any other activation function, e.g., Relu, 
TanH, etc. The activation function can be defined either as a 
mathematical expression, or most convenient, by using a UDF. 
For the biases case, in line 13, the reduceByRow() function is 
introduced, this function takes a MDD as input and performs and 
induced sum of rows for this MDD. It is important to keep the 
order of the elements in the case clause when constructing the 
neural network expression as the order in which the weights, 
biases, and activations are calculated does matter and rely on the 
proper updating of previous MDDs. With this the forward 
propagation step is done. 

Now we proceed with the backpropagation step. First, we 
introduce an OVERLAY operator in line 24 which in rasdaman 
allows to combine two equally sized MDDs by placing one “on 
top “of the other, in this case we use it to maintain the MDDs 
calculated from the forward propagation step into the 
backpropagation step. Next, we continue defining another 
MARRAY construct that will work as a backward iterator. The 
MARRAY construct loop MARRAY j IN [9:1] AS layers in line 
25 iterates from the output and calculate the errors for each layer 
of the neural network and save the errors in a iters.errors MDD. 
When the iterator layers is positioned in the output layer, in this 
case j=9 in line 32, then an element-wise subtraction is 
performed to calculate the differences between the last layer 
activations from iters.activations and the ground truth Y which 
is user defined and same as with the input values X it can be a 
MDD or a MDD expression. 

When the iterator is positioned in any layer different from 
the output layer, i.e., j<9 in line 33, then the errors are calculated 
using the errors from the previous layer, i.e., j+1 matrix 
multiplied by the transpose of the iters.weights here denoted 
with a ' in iters.weights[i][j+1]' and the derivative of the 
sigmoid function, here denoted as the sigmoidDerivative() 
function. The sigmoidDerivative() function once again follows 
the same pattern as with the sigmoid() function defined in 
section IV; it can be defined as a mathematical expression or a 



UDF. In this step we also make use of the element-wise 
multiplication with operator * that will update the errors in 
iters.errors MDD. With this we conclude the backpropagation 
step. 

After performing the forwarding propagation and 
backpropagation steps the external MARRAY construct 
MARRAY i IN [0:10] AS iters in line 1 will continue to iterate 
until the maximum number of iterations are reached. The output 
will be updated weights and biases MDDs iters.weights and 
iters.biases respectively. These MDDs can later be used for the 
prediction function which will be explained in section  

Query 1 Training Query 

1: MARRAY i IN [0:10] AS iters 

2: VALUES ( 

3:  MARRAY j IN [0:9] AS layers 

4:  VALUES { 

5:   weights: 

6:    case 

7:     when i = 0 then initial_weights[j] 

8:     else iters.weights[i-1][j] - (alpha/m) #* 
(iters.activations[i-1][j-1] #* iters.errors[i-1][j]) 

9:    end, 

10:   biases: 

11:    case 

12:     when i = 0 then initial_biases[j] 

13:     else iters.biases[i-1][j] - (alpha/m) #* 
reduceByRow(iters.errors[i-1][j]) 

15:     end, 

16:   activations: 

17:    case 

18:     when j = 0 then X 

20:     else sigmoid((iters.activations[i][j-1] #*     
iters.weights[i][j]) + iters.biases[i][j]) 

21:     end, 

22:   errors: null 

23: } 

24: OVERLAY 

25: MARRAY j IN [9:1] AS layers 

26:  VALUES { 

27:   weights: null, 

28:   biases: null, 

29:   activations: null, 

30:   errors: 

31:    case 

32:     when j = 9 then iters.activations[i][j] - Y 

33:     else (iters.errors[i][j+1] #* 
iters.weights[i][j+1]') * 
sigmoidDerivative(iters.activations[i][j]) 

34:    end, 

35:  } 

36: ) 

B. Prediction Query 

This query uses a pretrained model and computes a 
prediction MDD that is the result of applying the model to one 
or several training examples. The model is either trained from 
the training algorithm in the previous section, or through another 
third-party, e.g., Pytorch, Tensorflow etc. The only requirement 
is that also needs to be converted into a MDD array in rasdaman. 

The inputs are the following: 

• Test Data (X): MDD array containing the test examples. 
NOTE: For simplicity we consider only rasdaman’s 
atomic types, like the ones in C. 

• Trained Weights (trained_weights): MDD array 
containing the trained weights. The trained can come 
from rasdaman training or using a third-party; however, 
it is essential that they are expressed as rasdaman MDDs. 

• Trained Biases (trained_biases): MDD array containing 
the trained biases. Same as with the trained weights, they 
can come from rasdaman training or third party but need 
to be rasdaman MDDs. 

The outputs are the following: 

• Predicted Array (predicted_array): MDD array 
containing the resulting predicted values from the neural 
network. Same as with the output from the predicted 
function, the outputs can either be temporary maintained 
in main memory or ingested into a collection in 
rasdaman. 

• Learned Biases (learned_biases): MDD array containing 
the trained weights. 

The prediction algorithm is nothing more than calculating 
the forward pass for 1 or many examples of test data X with the 
particularity of using already predefined trained weights and 
biases. After reaching the output layer we return the 
iters.activations MDD which corresponds to our 
predicted_array. The prediction query is described below: 

Query 2 Prediction Query 

1: MARRAY j IN [0:9] AS layers 

2: VALUES { 

3:  weights: 



4:   case 

5:    when i = 0 then trained_weights[j] 

6:    else iters.weights[j] 

7:   end, 

8: biases: 

9:  case 

10:   trained_biases[j] 

11:   else iters.biases[j] 

12:  end, 

13: activations: 

14:  case 

15:   when j = 0 then X 

16:   else sigmoid((iters.activations[i][j-1] #* 
iters.weights[i][j]) + iters.biases[i][j]) 

17:   end, 

18: } 

VI. CONCLUSIONS 

In this contribution we presented an implementation 
roadmap for neural network in array databases using the array 
database rasdaman. We commenced highlighting the linear 
algebra operations that are present in neural networks and later 
expressed the neural network training and prediction algorithms 
using rasdaman’s array query language rasql. By expressing a 
neural network using the array query language we get many of 
the query and storage optimizations that come with the array 
database. The biggest advantage is that we can avoid copying 
data all together. Training data, test data, and model itself will 
always reside on the server and experiments can be customized 
by simply using rasdaman’s slicing and subsetting operators. 

VII. FUTURE WORK 

In this contribution we presented an implementation 
roadmap for neural network in array databases using the array 
database rasdaman. We commenced highlighting the linear 
algebra operations that are present in neural networks and later 
expressed the neural network training and prediction algorithms 
using rasdaman’s array query language rasql. By expressing a 
neural network using the array query language we get many of 
the query and storage optimizations that come with the array 
database. The biggest advantage is that we can avoid copying 
data all together which generates a considerable amount of 
storage consumption and . Training data, test data, and model 
itself will always reside on the server and experiments can be 
customized by simply using rasdaman’s slicing and subsetting 
operators. Finally, we would like to make this solution domain 

agnostic by implementing in datacubes in fields or science like 
medicine, astrophysics, economics etc. 
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