
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Implementation Roadmap for Neural Networks in

Array Databases

Otoniel José Campos Escobar

Computer Science & Electrical

Engineering

Jacobs University Bremen

Bremen, Germany

o.camposescobar@jacobs-

university.de

Peter Baumann

Computer Science & Electrical

Engineering

Jacobs University Bremen

Bremen, Germany

p.baumann@jacobs-university.de

Abstract—Relational databases lack behind when handling

array data and thus array databases were created to fill this gap.

Array databases provide optimized storage, retrieval, and

processing of multidimensional discrete data (MDD), also known

as array data. Just like relational array databases, data processing

in array databases is handled declaratively through an array

query language that offers enough expressible power to define a

myriad of operations. However, despite the advancements in array

database technology, there is still a gap in describing machine

learning (ML) algorithms and in particular neural networks

which, in recent years, have been adopted for predicting

phenomena in science and engineering.

In this contribution, we outline an implementation roadmap

for defining neural networks in an array database. We first

identify the necessary linear algebra operators present in a feed-

forward neural network and use them to define the training and

prediction operations of that network. We also define other

operators that, though they are not part of linear algebra, are

essential for a complete machine-learning implementation.

Keywords—array databases, machine learning, linear algebra,

array query language, datacubes

I. INTRODUCTION

Machine Learning (ML) is increasingly being utilized in
many different applications in both industry and research. ML
estimates results by training predictive models using datasets
that can be several orders of magnitude larger than the main
memory. Historically, these datasets tend to either sit in the file
system or in a database for later retrieval by a third-party ML
software for modelling and training. In this regard, databases are
mostly used as mere data repositories. This approach overlooks
key beneficial features for ML model processing that are
provided by database systems, such as the declarative and
expressive power of a query language; and the powerful data
retrieval technologies that have been perfectioned over the years
since their inception in the 1960s.

A considerable number of datasets that are currently used for
ML are composed of multidimensional discrete data (MDD),
also known as array data or datacubes [1][2]. These datacubes,
which are often considered the “bread and butter” of scientific
computing [3][4], frequently represent spatio-temporal sensors,
images, simulations, and statistical data generated by a plethora
of applications in science, engineering, and beyond. Examples

of datacubes comprise 2-D satellite imagery, 3-D x/y/t image
time series, x/y/z geophysical voxel data, and 4-D x/y/z/t climate
data from the geoscience field; microarray, confocal
microscopy, and human brain data from life sciences [5]. The
amount of data produced and can reside in an Array Database is
huge, in the order of Petabytes (PB), with Terabytes of new data
being produced daily. This phenomenon can be seen in the
growth of NASA’s Earth Observing System Data and
Information System (EOSDIS) data archive from 15 Petabytes
(PB) of data in 2015 to more than 59 PB in 2022, with annual
data ingestion rates only expected to increase by an order of
magnitude by the end of 2021 [6].

Relational databases generally do not perform when
handling array data, to fill the gap array databases were created
[7]. Array Databases close a gap in the database world by
providing modelling, storage, and processing support on
datacubes. Currently, most ML applications do not use Array
Databases, which results in these applications not using the
latter's full array processing capabilities during model training
and prediction. Among the benefits of using array databases for
ML processing we have:

• Avoid massive data copying to external systems.

• Array database inherent efficient and scalable array data
processing techniques.

• Standardized declarative query language for trimming
and slicing multidimensional arrays.

Currently, most ML applications do not use Array
Databases. At its heart, ML algorithms are composed of linear
algebra. By defining the linear algebra operators in an array
database query language, users can leverage the inherent data
processing features of the array database with the inference
capabilities of machine learning algorithms.

In this contribution, we propose an implementation roadmap
of the necessary extensions that will be needed to define a neural
network in the array database rasdaman [7]. Neural networks
and especially deep neural networks are one of the most, if not
the most, used ML algorithm for modelling non-linear decision
boundaries. Its flexibility has made it ideal for many applications
in science and engineering which also crossroads with array
databases, e.g., Visual Query Answering for Remote Sensor
Data (RSVQA) [8] and High Latitude Dust Detection [9]. To

This work is funded by the German Federal Ministry for Economic Affairs

and Climate Action as project AI-Cube under contract 50 EE 2012.

.

build insight into the reader, we first define a feed-forward
neural network in mathematical terms while highlighting the
linear algebra components. This paper is organized as follows:
Section II. presents the related work that has been done towards
implementing ML in array databases. Section III describes the
rasdaman array query language. Section IV presents the
mathematical definition of a feed-forward neural network.
Section V describes the necessary language extensions to the
array query that implement a feed-forward neural network.
Finally, sections VI and VII present the conclusions and future
work respectively.

II. RELATED WORK

There have already been some attempts towards integrating
ML algorithms in array databases by incorporating user data
types (UDT) and user-defined functions (UDF). Systems like
MADlib [10] and Bismark [11] define a new UDT called vector
that stores matrix rows and columns. Fig. 1 illustrates the vector
UDT for matrices A and B. Once the UDT is defined, a
dotproduct(v1, v2) UDF is defined which calculates the dot
product of two matrices using the vector UDTs v1 and v2. Fig.
2 defines the query that will output the dot product of two tables.

Fig. 1. Matrix storage in tables using vector representation

SELECT A.i, B.j, dotproduct(A.row * B.col)

FROM A, B

WHERE A.j = B.i

GROUP BY A.i = B.j;

Fig. 2. Query calling the dotproduct user defined function

Other systems enable users to employ their preferred ML
framework, in this case Python, to construct a model with all
pre-processing steps and library dependencies. In this system,
users are also able to query an inferred value from that model.
The model and the query undergo static analysis to produce an
intermediate representation (IR) that later results in an optimized
query plan that is finally translated into an optimized SQL using
a runtime code generator that finally runs into a runtime engine
like ONNX. Its syntax is a melange of python with SQL query
syntax. The RAVEN system [12] employs this type of approach.

In the case of full-stack array databases, rasdaman permits
encapsulation of all linear algebra and ML-specific code into a
portable and callable UDF that can be executed as part of an
array query. This provides a way to extend the array database
functionality to support ML but can also decrease the efficiency
of ML algorithms because different database optimization
strategies cannot always be applied. From the users’ perspective,
they only need to define the appropriate parameters and the
database will output a result; this is a convenient and relatively
easy implementation approach for ML. However, other than the
ease of implementation and avoidance of data copying, there is
no actual use of the underlying array database optimization

techniques. In this contribution, we argue that the utilization of
these techniques should not be overlooked because they can
constitute a breakthrough in array data processing. The next
section presents rasdaman’s array query language and highlights
its key language structures that can support ML algorithm
definitions.

III. ARRAY QUERY LANGUAGE

In this section, we describe how rasdaman’s array query
language rasql, provides the necessary expressive power to
describe arrays of arbitrary size and dimension. In 2019, the
rasql query language has been adopted into ISO SQL – modulo
syntax adaptations – into ISO SQL [13].

A. rasdaman query language

rasdaman’s array query language [14], rasql, provides
retrieval, filtering, and processing of MDD operators. The
expressive power of rasql allows to state operations up to the
complexity of the Discrete Fourier Transformation. Its
cornerstone are two operators: the array constructor MARRAY
and the array condenser MDCONDENSE.

The MARRAY constructor takes an n-D array extent and an
expression and builds an array whose cells are filled by
evaluating the expression for each array position. For example,
Fig. 3 creates a 100x100 matrix filled with the pairwise
difference of cells taken from existing arrays a and b. This can
also be abbreviated as a-b.

MARRAY p in [0:99, 0:99]

VALUES a[p]-b[p]

Fig. 3. MARRAY pairwise difference example

Any general index computation is possible, though, such as
determining changes in an x/y/t time-series tx. Fig. 4 exemplifies
how this can be defined.

MARRAY x in [0:99],

 y in [0:99],

 t in [0:99]

VALUES ts[x,y,t] - ts[x,y,t-1]

Fig. 4. MARRAY example to determine changes in x/y/t

The condenser MDCONDENSE is somewhat dual in that it
iterates over some array area and aggregates based on some
aggregation function which is one of the usual suspects count,
sum, avg, min, max, some, and all. Fig. 5 shows an expression
which determines the maximum value of a MDD array.

Fig. 5. MDCONDENSE maximum value example

Again, there is a shorthand for this simple case, written as
mdmax(a). And as before, general expressions and addressing

MDCONDENSE max

OVER p in sdom(a)

USING a[p]

schemes are possible. Altogether, a typical array SQL query
looks like below. Fig. 6 contains an attribute data constituting an
array with many satellite image spectral bands, including red
and nir. From this, the difference of two bands is computed for
every tuple, restricted to the x/y/t coordinates indicated in
brackets. The result gets encoded in NetCDF, so the query
response overall is a (possibly empty) set of NetCDF files.

SELECT encode(ls.data.red - ls.data.nir)

 [x0:x1, y0:y1, t0:t1],

 "application/netcdf")

FROM LandsatImageTimeseries as ls

Fig. 6. Array with many satellite image spectral bands example

This language allows expressing operations on vectors,
matrices, and tensors up to the complexity of the Discrete
Fourier Transform. What cannot be expressed are algorithms
that are inherently iterative, such as matrix inversion. Adding
iterative power to the language, ultimately enabling complete
Linear Algebra, while retaining termination guarantees is an
area of active research.

IV. MATHEMATICAL DEFINITION OF A FEED-FORWARD NEURAL

NETWORK

To build intuition into the necessary linear algebra operators
that are needed for defining a neural network, the following
section covers the mathematical definition of a simplified feed-
forward neural network. We proceed to describe its inputs and
outputs along with the necessary linear algebra operations
needed to implement a neural network.

Neural networks are robust and widely used ML algorithms
used for both regression and classification problems. Although
firstly conceived to build machines that mimic the human brain,
it has been widely adopted in many everyday applications like
image recognition, sales forecasting, and text classification.

In its essence, a neural network is a group of connected
neurons ordered in layers. Fig. 7 depicts an example of a neural
network that consists of 4 layers. Layer 1 (input layer) contains
the features of the training sample {x1, x2, x3} . Layer 2 and
Layer 3 are hidden layers that contain the activation nodes; each

activation unit 𝒊 in layer 𝒋 can be identified as aj
i. Finally, Layer

4 is the output layer, or the result of the hypothesis where

hθ(x) = [a1
(4)

a2
(4)

a3
(4)] and K = 3, where K is the number

of labels. Any output layer with K > 2 is considered a multi-

class classification neural network. The bias units xo, a0
(2)

, and

a0
(3)

; shift the activation function by adding a constant, usually

1, to the input. It is analogous to the role of a constant in a linear
function.

Fig. 7. Feed-forward neural network

For each layer j there exists a weight matrix θ(j) that
contains the weight mapping from layer j to layer j + 1. Figure

below shows the weight matrix for the first layer 𝜃(1). Equation

(1) shows the weight matrix for the first layer θ(1) . As a

convention in this paper, let θxy
(j)

 represent the weight from unit

y in a preceding layer 𝑗 to unit x in subsequent layer.

 𝜃(1) = [

𝑎10
(1)

𝑎11
(1)

𝑎12
(1)

𝑎13
(1)

𝑎20
(1)

𝑎21
(1)

𝑎22
(1)

𝑎23
(1)

𝑎30
(1)

𝑎31
(1)

𝑎32
(1)

𝑎33
(1)

] ()

To calculate the resulting hypothesis, we must perform a
forward propagation to compute the unit’s activation. Equation
(2) defines the activation unit’s computation for any layer j for
the 4-layer neural network. Where g represents the activation
function, which in this example is sigmoid.

𝑎1
(𝑗+1)

= 𝑔(𝜃10
(𝑗)

𝑎0
(𝑗)

+ 𝜃11
(𝑗)

𝑎1
(𝑗)

+ 𝜃12
(𝑗)

𝑎2
(𝑗)

+ 𝜃13
(𝑗)

𝑎3
(𝑗)

)

𝑎2
(𝑗+1)

= 𝑔(𝜃20
(𝑗)

𝑎0
(𝑗)

+ 𝜃21
(𝑗)

𝑎1
(𝑗)

+ 𝜃22
(𝑗)

𝑎2
(𝑗)

+ 𝜃23
(𝑗)

𝑎3
(𝑗)

)

𝑎3
(𝑗+1)

= 𝑔(𝜃30
(𝑗)

𝑎0
(𝑗)

+ 𝜃31
(𝑗)

𝑎1
(𝑗)

+ 𝜃32
(𝑗)

𝑎2
(𝑗)

+ 𝜃33
(𝑗)

𝑎3
(𝑗)

)

 ()

Finally, equation (3) expresses the hypothesis function ℎ𝜃.
Here 𝑗 denotes the last hidden layer of the neural network.

 ℎ𝜃(𝑥) = [

𝑔(𝜃10
(𝑗)

𝑎0
(𝑗)

+ 𝜃11
(𝑗)

𝑎1
(𝑗)

+ 𝜃12
(𝑗)

𝑎2
(𝑗)

+ 𝜃13
(𝑗)

𝑎3
(𝑗)

)

𝑔(𝜃20
(𝑗)

𝑎0
(𝑗)

+ 𝜃21
(𝑗)

𝑎1
(𝑗)

+ 𝜃22
(𝑗)

𝑎2
(𝑗)

+ 𝜃23
(𝑗)

𝑎3
(𝑗)

)

𝑔(𝜃30
(𝑗)

𝑎0
(𝑗)

+ 𝜃31
(𝑗)

𝑎1
(𝑗)

+ 𝜃32
(𝑗)

𝑎2
(𝑗)

+ 𝜃33
(𝑗)

𝑎3
(𝑗)

)

] ()

The cost function 𝐽(𝜃)for feed-forward neural networks is

depicted in Equation (4). Where 𝑦𝑘
(𝑖)

 and (ℎ𝜃(𝑥(𝑖)))𝑘 are,

respectively, the 𝑘𝑡ℎ elements of the expected output and the

hypothesis output for input example 𝑥(𝑖).

 𝐽(𝜃) =
−1

𝑚
∑ ∑ 𝑦𝑘

(𝑖)
log(ℎ𝜃(𝑥(𝑖)))𝑘 + (1 −𝐾

𝑘=1
𝑚
𝑖=1

 𝑦𝑘
(𝑖)

) log(1 − log(ℎ𝜃(𝑥(𝑖)))𝑘) (4)

Once the cost is calculated, the next step is to calculate the
gradient descent, for that it is necessary to use the cost function,
its partial derivative, and execute the backpropagation
algorithm. This algorithm computes the error for each input

sample, using the cost function, and subsequently calculates the
partial derivative by backpropagating the errors from the output
layer to the input layer. To exemplify this process, we will use a
4-layer neural network example from before and use its
vectorized implementation for simplification.

For each training sample (𝒙, 𝒚), we compute the activations
of the units with forward propagation. Equations (5) – (10)
define the sequence of operations in forward propagation.

𝑎(1) = 𝑥 ()

𝑧(2) = 𝜃(1)𝑎(1) ()

a(2) = g(z(2)) (add a0
(2)

) ()

z(3) = θ(2)a(2) ()

a(3) = g(z(3)) (add a0
(3)

) ()

z(4) = θ(3)a(3)a(4) = hθ(x) = g(z(4)) ()

Once the resulting hypothesis is calculated, the
backpropagation algorithm is used to compute each unit’s error
in the training example. Equations (11) – (13) depicts the
sequence of operations for backward propagation. The errors for

layer l are denoted as 𝜹(𝒍). In this approach, the errors for the
output layer are calculated first. Subsequently we continue with
layer l by backpropagating the errors in layer 𝑙 + 1.

δ(4) = hθ(x) − y = a(4) − y ()

δ(3) = (θ(3))Tδ(4).∗ g′(z(3)) ()

𝛿(2) = (𝜃(2))𝑇𝛿(3).∗ 𝑔′(𝑧(2)) ()

When training the neural network, the errors computed for
each training example are used to calculate the overall partial
derivatives for the entire training set. Fig. 6 shows the
implementation of the backpropagation algorithm.

Algorithm 1 Backpropagation Algorithm

1: training_set = [(x1, y1), (x2, y2), …, (xm, ym)]

2: delta[l] = 0 (for all i, j, l)

3: for i = 1; i < m; do

4: a[1] = x[1]

5: for l = 2; l <= L; l++ do

6: forward_propagation(a[l])

7: end for

8: error(L) = a[L] – y[i]

9: for j = 1; L – j >= 2; j++ do

10: compute_errors(error(L-j))

12: end for

13: for l = 1; h >= ; h++ do

14: delta[l] = delta[l] + error(l+1) *. transpose(a[l])

15: end for

16: end for

17: partial_derivatives = delta[l] / m

Fig. 8. Backpropagation algorithm

The convention for assigning values is the “=”. Line 1
assigns a 1-dimensional array of key pairs to variable
training_set; xn contains the training example and yn the ground
truth. In Line 2 the accumulated errors delta[l] for layer l, row i,
and column j are initialized to zero. Lines 3-16 execute the
forward propagation, error computation, and error accumulation
for each training example. Finally, in line 17 the
partial_derivatives variable stores the partial derivatives using
the accumulated errors.

In summary, the backpropagation algorithm can be
constructed by utilizing the following linear algebra operators:

• Vector/Matrix - Scalar operations: +, -, * , /

• Vector/Matrix unary operations: transpose

• Vector/Matrix binary operations: +, -, *, /

• Vector/Matrix element-wise operations: .*

• Vector/Matrix aggregate operations: sum

In addition, although not part of linear algebra, iteration
constructs are also necessary for calculating the forward and
back propagation of each training sample.

V. ARRAY QUERY LANGUAGE EXTENSIONS

This section comprehends the definition of two queries that
constitute the training and prediction routines of a neural
network. It is worth mentioning that it is not worth investing
time and effort developing new implementations of linear
algebra operators such as tensor transpose or tensor
multiplication. There are already efficient open-source
implementations of these operators that can be used ad-hoc to
perform these operations inside an array database, such as BLAS
[15], LAPACK [16], or architecture specific libraries such as
Intel MKL [17].

In this section, we focus on a fully connected feed forward
neural network. We define two queries that constitute the
training and prediction routines of a neural network. For each
routine, we define the queries inputs and expected outputs.

A. Training Query

This query has the objective of calculating the weights and
biases that best fit the training examples to the ground truth.
Inputs are the following:

• Training Data (X): MDD array containing the training
examples. NOTE: For simplicity we consider only
rasdaman’s atomic types, like the ones in C.

• Ground Truth (Y): MDD array containing the labels or
ground truth. Same as with the training data we consider
only rasdaman’s atomic types.

• Initial Weights (initial_weights): MDD array containing
the user defined initial weights. If none is provided, then
a MDD with all values equal to zero will be assumed.

• Initial Biases (initial_biases): MDD array containing the
user defined initial biases. If none is provided, then a
MDD with all values equal to zero will be assumed.

• Learning Rate (alpha): Scalar value which determines
the steps which are taken in the minimization of the cost
function.

• Number of Training Examples (m): Scalar value that
determines the number of training examples in the input
training data X this number can be determined
automatically by rasdaman or provided by the user.

• Activation Function (default: sigmoid): It is the function
that determines the activation value of each neuron. It
can be expressed by the user either in mathematical form
or using UDFs.

• Activation Function Derivative (default:
sigmoidDerivative): The function is used in the back
propagation step to update the errors MDD. Same as with
activation function it can be expressed by the user either
in mathematical form or using UDFs.

The outputs can either be temporary maintained in main
memory or ingested into a collection in rasdaman. They are the
following:

• Learned Weights (learned_weights): MDD array
containing the trained weights.

• Learned Biases (learned_biases): MDD array containing
the trained weights.

We commence on line 1 be defining a MARRAY construct
as an iterator, the outer loop MARRAY i IN [0:10] AS iters
represents the epochs which are user specified and represent
how many times the neural network will adjust the weights and
biases for all the layers in the network. Lines 2-36 encapsulate
the forward and backpropagation routines defined in section IV.
From lines 3-23, we are inside the the MARRAY iterator and
start performing the forward pass of the neural network, for that
line 3 defines another MARRAY construct MARRAY j IN [0:10]
AS layers that represents each of the layers of the neural
network; These are defined by the user. Next, on lines 3-23 a
second MARRAY iterator construct is defined which
encapsulates a case clause which performs four operations: 1)
Update of the weights MDD, 2) Update of the bias MDD, 3)
Update of the activations MDD, and 4) Provide control for when
to calculate the errors. Lines 5-9 define the operations necessary
in the weights case; the algorithm starts with the first step of the
iteration, i.e,. i = 0, in line 7 where an already defined
initial_weights MDD loads the user-specified weights on a
training weights MDD called iters.weights. Next, the the biases
case in line 12, the initial_biases are loaded into a training biases
MDD iters.biases. Furthermore, in the activations case in line

18, the initial values of the training activations MDD
iters.activations will be the user defined input values X, which
is a MDD, or MDD expression (subsetting, slicing, etc),
containing the training examples. Finally, the errors case in line
22 assures that no error during updating is done to the training
errors. MDD iters.errors in the forward propagation step. This
is reserved exclusively to the backpropagation step.

In the following steps of the iteration, i.e,. i > 0, the case
clause will calculate the forward pass of the neural network
updating the weights, biases, and activations MDDs i.e,.
iters.weights, iters.biases, and iters.activations using the defined
linear algebra operators #* (tensor multiplication), and +, - for
element-wise addition and subtraction respectively. For the
weights and biases case, we reference a iters.errors MDD in line
8 which contain the backpropagated errors from the
backpropagation step. Additionally, two scalars alpha and m are
introduced. The first scalar alpha is user defined and refers to
the learning rate. The second scalar m can either be a value
defined by the user or calculated internally and refers to the
number of training examples. In the activations case, in line 20,
an activation function must be defined. In this opportunity, we
continue with the sigmoid() function following the feed-forward
neural network example from section IV; the activation function
can be replace with any other activation function, e.g., Relu,
TanH, etc. The activation function can be defined either as a
mathematical expression, or most convenient, by using a UDF.
For the biases case, in line 13, the reduceByRow() function is
introduced, this function takes a MDD as input and performs and
induced sum of rows for this MDD. It is important to keep the
order of the elements in the case clause when constructing the
neural network expression as the order in which the weights,
biases, and activations are calculated does matter and rely on the
proper updating of previous MDDs. With this the forward
propagation step is done.

Now we proceed with the backpropagation step. First, we
introduce an OVERLAY operator in line 24 which in rasdaman
allows to combine two equally sized MDDs by placing one “on
top “of the other, in this case we use it to maintain the MDDs
calculated from the forward propagation step into the
backpropagation step. Next, we continue defining another
MARRAY construct that will work as a backward iterator. The
MARRAY construct loop MARRAY j IN [9:1] AS layers in line
25 iterates from the output and calculate the errors for each layer
of the neural network and save the errors in a iters.errors MDD.
When the iterator layers is positioned in the output layer, in this
case j=9 in line 32, then an element-wise subtraction is
performed to calculate the differences between the last layer
activations from iters.activations and the ground truth Y which
is user defined and same as with the input values X it can be a
MDD or a MDD expression.

When the iterator is positioned in any layer different from
the output layer, i.e., j<9 in line 33, then the errors are calculated
using the errors from the previous layer, i.e., j+1 matrix
multiplied by the transpose of the iters.weights here denoted
with a ' in iters.weights[i][j+1]' and the derivative of the
sigmoid function, here denoted as the sigmoidDerivative()
function. The sigmoidDerivative() function once again follows
the same pattern as with the sigmoid() function defined in
section IV; it can be defined as a mathematical expression or a

UDF. In this step we also make use of the element-wise
multiplication with operator * that will update the errors in
iters.errors MDD. With this we conclude the backpropagation
step.

After performing the forwarding propagation and
backpropagation steps the external MARRAY construct
MARRAY i IN [0:10] AS iters in line 1 will continue to iterate
until the maximum number of iterations are reached. The output
will be updated weights and biases MDDs iters.weights and
iters.biases respectively. These MDDs can later be used for the
prediction function which will be explained in section

Query 1 Training Query

1: MARRAY i IN [0:10] AS iters

2: VALUES (

3: MARRAY j IN [0:9] AS layers

4: VALUES {

5: weights:

6: case

7: when i = 0 then initial_weights[j]

8: else iters.weights[i-1][j] - (alpha/m) #*
(iters.activations[i-1][j-1] #* iters.errors[i-1][j])

9: end,

10: biases:

11: case

12: when i = 0 then initial_biases[j]

13: else iters.biases[i-1][j] - (alpha/m) #*
reduceByRow(iters.errors[i-1][j])

15: end,

16: activations:

17: case

18: when j = 0 then X

20: else sigmoid((iters.activations[i][j-1] #*
iters.weights[i][j]) + iters.biases[i][j])

21: end,

22: errors: null

23: }

24: OVERLAY

25: MARRAY j IN [9:1] AS layers

26: VALUES {

27: weights: null,

28: biases: null,

29: activations: null,

30: errors:

31: case

32: when j = 9 then iters.activations[i][j] - Y

33: else (iters.errors[i][j+1] #*
iters.weights[i][j+1]') *
sigmoidDerivative(iters.activations[i][j])

34: end,

35: }

36:)

B. Prediction Query

This query uses a pretrained model and computes a
prediction MDD that is the result of applying the model to one
or several training examples. The model is either trained from
the training algorithm in the previous section, or through another
third-party, e.g., Pytorch, Tensorflow etc. The only requirement
is that also needs to be converted into a MDD array in rasdaman.

The inputs are the following:

• Test Data (X): MDD array containing the test examples.
NOTE: For simplicity we consider only rasdaman’s
atomic types, like the ones in C.

• Trained Weights (trained_weights): MDD array
containing the trained weights. The trained can come
from rasdaman training or using a third-party; however,
it is essential that they are expressed as rasdaman MDDs.

• Trained Biases (trained_biases): MDD array containing
the trained biases. Same as with the trained weights, they
can come from rasdaman training or third party but need
to be rasdaman MDDs.

The outputs are the following:

• Predicted Array (predicted_array): MDD array
containing the resulting predicted values from the neural
network. Same as with the output from the predicted
function, the outputs can either be temporary maintained
in main memory or ingested into a collection in
rasdaman.

• Learned Biases (learned_biases): MDD array containing
the trained weights.

The prediction algorithm is nothing more than calculating
the forward pass for 1 or many examples of test data X with the
particularity of using already predefined trained weights and
biases. After reaching the output layer we return the
iters.activations MDD which corresponds to our
predicted_array. The prediction query is described below:

Query 2 Prediction Query

1: MARRAY j IN [0:9] AS layers

2: VALUES {

3: weights:

4: case

5: when i = 0 then trained_weights[j]

6: else iters.weights[j]

7: end,

8: biases:

9: case

10: trained_biases[j]

11: else iters.biases[j]

12: end,

13: activations:

14: case

15: when j = 0 then X

16: else sigmoid((iters.activations[i][j-1] #*
iters.weights[i][j]) + iters.biases[i][j])

17: end,

18: }

VI. CONCLUSIONS

In this contribution we presented an implementation
roadmap for neural network in array databases using the array
database rasdaman. We commenced highlighting the linear
algebra operations that are present in neural networks and later
expressed the neural network training and prediction algorithms
using rasdaman’s array query language rasql. By expressing a
neural network using the array query language we get many of
the query and storage optimizations that come with the array
database. The biggest advantage is that we can avoid copying
data all together. Training data, test data, and model itself will
always reside on the server and experiments can be customized
by simply using rasdaman’s slicing and subsetting operators.

VII. FUTURE WORK

In this contribution we presented an implementation
roadmap for neural network in array databases using the array
database rasdaman. We commenced highlighting the linear
algebra operations that are present in neural networks and later
expressed the neural network training and prediction algorithms
using rasdaman’s array query language rasql. By expressing a
neural network using the array query language we get many of
the query and storage optimizations that come with the array
database. The biggest advantage is that we can avoid copying
data all together which generates a considerable amount of
storage consumption and . Training data, test data, and model
itself will always reside on the server and experiments can be
customized by simply using rasdaman’s slicing and subsetting
operators. Finally, we would like to make this solution domain

agnostic by implementing in datacubes in fields or science like
medicine, astrophysics, economics etc.

ACKNOWLEDGMENT

The authors are grateful to Begüm Demir, Kai Norman
Clasen, and Leonard Hackel for the valuable discussions and
insights on various neural networks details. This work is funded
by the German Federal Ministry for Economic Affairs and
Climate Action as project AI-Cube under contract 50 EE 2012.
We also want to thank our colleague Dimitar Misev for laying
the basis of the extensions in rasql to express neural network
operations.

REFERENCES

[1] P. Baumann, “The Datacube Manifesto”,
http://earthserver.eu/tech/datacube-manifesto“, seen 2017-08-20.

[2] Baumann, P., Misev, D., Merticariu, V. et al. Array databases: concepts,
standards, implementations. J Big Data 8, 28 (2021).
https://doi.org/10.1186/s40537-020-00399-2

[3] 2001. The Perl Journal. Sys Admin 10, 12 (December 2001), 47–49.

[4] Dr. Dobb's journal staff. 2002. Dr. Dobb's news & views. Dr. Dobb's
J. 27, 6 (June 2002), 14.

[5] Escobar, Otoniel José Campos, Dimitar Misev, and Peter Baumann.
"Making an Array Database Language Server-Side Extensible." 2020
IEEE International Conference on Big Data (Big Data). IEEE, 2020.

[6] EarthData, “Earthdata cloud evolution”,
https://earthdata.nasa.gov/eosdis/cloud-evolution, seen 2022-nov-23.

[7] Baumann, Peter, et al. "The multidimensional database system
RasDaMan." Proceedings of the 1998 ACM SIGMOD international
conference on Management of data. 1998.

[8] Lobry, Sylvain, et al. "RSVQA: Visual question answering for remote
sensing data." IEEE Transactions on Geoscience and Remote
Sensing 58.12 (2020): 8555-8566.

[9] Priftis, Georgios, et al. "Pixel Based Model For High Latitude Dust
Detection." AGU 2019 Fall Meeting. No. MSFC-E-DAA-TN76101. 2019.

[10] Hellerstein, J., Ré, C., Schoppmann, F., Wang, D. Z., Fratkin, E., Gorajek,
A., ... & Kumar, A. (2012). The MADlib analytics library or MAD skills,
the SQL. arXiv preprint arXiv:1208.4165.

[11] Feng, Xixuan, et al. "Towards a unified architecture for in-RDBMS
analytics." Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 2012.

[12] Park, Kwanghyun, et al. "End-to-end Optimization of Machine Learning
Prediction Queries." arXiv preprint arXiv:2206.00136 (2022).

[13] ISO, “9075-15:2019 SQL/MDA (MultiDimensional Arrays)”,
https://www.iso.org/ standard/67382.html, seen 2022-07-27.

[14] P. Baumann: A Database Array Algebra for Spatio-Temporal Data and
Beyond. Proc. Intl. Workshop on Next Generation Information
Technologies and Systems (NGITS), July 5-7, 1999, Zikhron Yaakov,
Israel, Springer LNCS 1649, 1999.

[15] Zhuliang Chen and Arne Storjohann. 2005. A BLAS based C library for
exact linear algebra on integer matrices. In Proceedings of the 2005
international symposium on Symbolic and algebraic computation (ISSAC
'05). Association for Computing Machinery, New York, NY, USA, 92–
99. https://doi.org/10.1145/1073884.1073899

[16] Anderson, E., et al. "LAPACK: A Portable Linear Algebr a Library for Hi
gh-Performance Computers." (1990).

[17] Wang, E. et al. (2014). Intel Math Kernel Library. In: High-Performance
Computing on the Intel® Xeon Phi™. Springer, Cham.
https://doi.org/10.1007/978-3-319-06486-4_7

